黎曼几何概论
《黎曼几何概论》中着手本领域比较熟悉的话题,并且尽快过渡到最新科研成果。这些结果并没有给出详细的证明,但一些的重要的结果仍然描述的十分详细生动,使得读者对该领域有详细深刻的理解。然而,黎曼流形作为一个
《黎曼几何概论》中着手本领域比较熟悉的话题,并且尽快过渡到最新科研成果。这些结果并没有给出详细的证明,但一些的重要的结果仍然描述的十分详细生动,使得读者对该领域有详细深刻的理解。然而,黎曼流形作为一个
《奇异积分和函数的可微性(英文)(影印版)》内容简介:This book is an outgrowth of a course which I gave at Orsay duringthe academic year 1 966.67 MY purpose in those lectures was to pre-sent some of the
《概率论和随机过程(第2版)》是以作者在princeton大学和maryland大学的讲义为蓝本扩充而成,书中的内容正好可作为《概率论和随机过程》课程一学年的独立教材。这对于高年级的本科生、研究生和想要了解本科目基础知识
《李群论(英文版)》内容简介:古典李群(变换群)及其在微分方程、微分几何、力学之应用。李代数是挪威数学家S.李(数学家李)在19世纪后期研究连续变换群时引进的一个数学概念,它与李群的研究密切相关。在更早些时
To the Teacher. This book is designed to introduce a student to some of the important ideas of algebraic topology by emphasizing the relations of these ideas with other areas of mathematics. Rather th
Hecke was certainly one of the masters, and in fact, the study of Hecke Lseries and Hecke operators has permanently embedded his name in the fabric of number theory. It is a rare occurrence when a mas
Mathematics is playing an ever more important role in the physical and biological sciences, provoking a blurring of boundaries between scientific disciplines and a resurgence of interest in the modern
Approximation al
Since the publication of the first edition of this book, both through teaching the material it covers and as a result of receiving helpful comments from colleagues, we have become aware of the desirab
This text is concerned with a probabilistic approach to image analysis as initiated by U. GRENANDER, D. and S. GEMAN, B.R. HUNT and many others, and developed and popularized by D. and S. GEMAN in a p
本书是在1996年出版的《常微分方程》(德文)一书的基础上编写而成的,书中主要介绍常微分方程的基础理论。内容包括:可积一阶微分方程,微分方程解的存在性和唯一性,微分方程的初极值问题,边值问题和特征值问题,
The subject of partial differential equations holds an exciting and special position in mathematics. Partial differential equations were not consciously created as a subject but emerged in the 18th ce
本书是以作者1986年~1987年在Lund大学三个学期授课的讲义为基础,经改写而成的,主要论述了非线性双曲型偏微分方程解的全局存在性或“爆破”(blowup),以及解的奇异性传播。书中所用的方法是基于对波方程或Yang-Mills
本书是一部备受专家好评的教科书,书中用现代的方式清晰论述了实分析的概念与理论,定理证明简明易懂,可读性强,全书共有200道例题和1200例习题。本书的写法像一部文学读物,这在数学教科书很少见,因此阅读本书会
《球垛格点和群(第3版)》,继前两版之后,接着探讨“如何最有效地将大量等球放入n维的欧氏空间中?”这一核心问题。同时,作者仍在思考一些相关的问题,如:吻接数问题,覆盖问题,量子化问题以及格分类与二次型。与前