微分几何
《微分几何》力图与近代微分几何的语言和方法靠近,突出标架场的功用,介绍活动标架和外微分法。《微分几何》阐述深入浅出,条理清楚,突显几何思想,便于读者理解和掌握。
《微分几何》力图与近代微分几何的语言和方法靠近,突出标架场的功用,介绍活动标架和外微分法。《微分几何》阐述深入浅出,条理清楚,突显几何思想,便于读者理解和掌握。
《数学的思维方式与创新》是作者在北京大学多次给本科生讲授“数学的思维方式与创新”素质教育通选课的教材。什么是数学的思维方式?如何培养学生的数学思维能力?数学的思维方式包括哪几个环节?作者用通俗易懂的语言论
这是一部泛函分析教材,它系统地介绍线性算子理论的基础知识,算子半群以及连续函数空间上的Wiener测度和Hilbert空间上的Gauss测度。全书共分四章:Banach代数;无界算子;算子半群以及无穷维空间上的测度论。《泛函
《离散数学教程》共分五编。第一编为集合论,其中包括集合的基本概念、二元关系、函数、自然数、基数、序数。第二编为图论,其中包括图的基本概念、图的连通性、欧拉图与哈密顿图、树、平面图、图的着色、图的矩阵表
本书是高等院校高等代数课程的学习用书,内容包括两大部分:一是线性代数,包括向量空间和矩阵,行列式,抽象线性空间和线性变换,双线性函数和二次型,带度量的线性空间,若尔当标准形理论;二是一元和多元多项式。
本书是根据美国科学院院士,著名数学家P·格列菲斯在北京大学讲课的讲稿整理写成的。本书篇幅虽不大,但内容丰富,阐述精炼,引人入胜。书中深入浅出地介绍了正则化定理,Riemann-Roch定理,Abel定理等代数曲线论的重
《实变函数解题指南》是实变函数课程的学习辅导用书,其内容是在作者编写的普通高等教育“九五”教育部重点教材《实变函数论》(北京大学出版社,2001)的基础上添加新题目后整理而成。
本书是为高等院校数学各专业“复变函数”课程编写的教材。它的先修课程是数学分析或高等数学。全书共分八章,内容包括:复平面,扩充复平面,解析函数,方式线性变换,Cauchy定理,Cauchy公式,幂级数,最大模原理,Sc
《高等数学解题指南》是理工医农各专业的大学生学习“高等数学”课的辅导教材。两位作者在北京大学从事高等数学教学四十年,具有丰富的教学经验,深知学生的疑难与困惑。他们围绕着该课的基本内容与教学要求,根据学生
《简明数论》是初等数论入门教材。全书共分三十六节,内容包括:整除、不定方程、同余、指数与原根、连分数、数论函数等。每节配备适量习题,书末附有提示与解答。《简明数论》积累了作者数十年的教学经验,它是在作
《偏微分方程》共分为四章,重点论述偏微分方程中最简单的位势方程、热方程和波动方程的基本理论和基本方法。在各章节中,分别介绍这些方程的初值问题和混合问题的求解方法,同时介绍关于这些问题的一些先验估计,从
本书是高等院校计算数学专业本科生学习数值分析课程的教材,全书内容除包括传统数值分析课程讲授的误差分析、多项式插值、数值微分与积分、非线性方程的数值解法、常微分方程初值问题的数值解法等以外,还加入了快速
本书是为综合性大学、高等师范院校数学专业本科高年级学生和研究生编写的复分析教材,其目的是讲述现代复分析(不含多复分析)的一些基本理论及其近代重要发展。 本书共分九章,主要内容有:正规族与Riemann映射定理,