见侮而不斗,辱也。
--《公孙龙子》
:

基础数论

基础数论

作者: (法)Andre Weil

出版社: 世界图书出版公司

出版时间: 2010年01月

价格: 49.00元

ISBN: 9787510004551

【🔥扫码右侧二维码】

【📱扫码极速下载】浏览器自动唤起

💎独家资源·限时共享

作者简介:

Andre Weil 1906年5月6日出生于巴黎,1928年于巴黎大学获得博士学位,他曾先后在印度,法国,美国及巴西等国执教,1958年来到普林斯顿高等研究院从事研究工作,离休后现任该处终身教授。 Andre Weil的工作为抽象代数几何及Abel簇的现代理论的研究奠定了基础,他的大多数研究工作都在致力于建立“数论”、“代数几何”之间的联系,以及发明解析数论的现代方法。Weil是1934年左右成立的Bourbaki学派的创始人之一,此学派以集体名称N.Bourbaki出版了有着很高影响力的多卷专著《数学的基础》。

内容简介:

The first part of this volume is based on a course taught at Princeton University in 1961-62; at that time, an excellent set of notes was prepared by David Cantor, and it was originally my intention to make these notes available to the mathematical public with only quite minor changes. Then, among some old papers of mine, I accidentally came across a long forgotten manuscript by Coevally, of prewar vintage (forgotten, that is to say, both by me and by its author) which, to my taste at least, seemed to have aged very well. It contained a brief but essentially complete account of the main features of class field theory, both local and global; and it soon became obvious that the usefulness of the intended volume would be greatly enhanced if I included such a treatment of this topic. It had to be expanded, in accordance with my own plans, but its outline could be preserved without much change. In fact, I have adhered to it rather closely at some critical points. 目录 Chronological table Prerequisites and notations Table of notations PART Ⅰ ELEMENTARY THEORY Chapter Ⅰ Locally compact fields 1 Finite fields 2 The module in a locally compact field 3 Classification of locally compact fields 4 Structure 0f p-fields Chapter Ⅱ Lattices and duality over local fields 1 Norms 2 Lattices 3 Multiplicative structure of local fields 4 Lattices over R 5 Duality over local fields Chapter Ⅲ Places of A-fields 1 A-fields and their completions 2 Tensor-products of commutative fields 3 Traces and norms 4 Tensor-products of A-fields and local fields Chapter Ⅳ Adeles 1 Adeles of A-fields 2 The main theorems 3 Ideles 4 Ideles of A-fields Chapter Ⅴ Algebraic number-fields 1, Orders in algebras over Q 2 Lattices over algebraic number-fields 3 Ideals 4 Fundamental sets Chapter Ⅵ The theorem of Riemann-Roch Chapter Ⅶ Zeta-functions of A-fields 1 Convergence of Euler products 2 Fourier transforms and standard functions 3 Quasicharacters 4 Quasicharacters of A-fields 5 The functional equation 6 The Dedekind zeta-function 7 L-functions 8 The coefficients of the L-series Chapter Ⅷ Traces and norms 1 Traces and norms in local fields 2 Calculation of the different 3 Ramification theory 4 Traces and norms in A-fields 5 Splitting places in separable extensions 6 An application to inseparable extensions PART Ⅱ CLASSFIELD THEORY Chapter IX Simple algebras 1 Structure of simple algebras 2 The representations of a simple algebra 3 Factor-sets and the Brauer group 4 Cyclic factor-sets 5 Special cyclic factor-sets Chapter Ⅹ Simple algebras over local fields 1 Orders and lattices 2 Traces and norms 3 Computation of some integrals Chapter Ⅺ Simple algebras over A-fields 1. Ramification 2. The zeta-function of a simple algebra 3. Norms in simple algebras 4. Simple algebras over algebraic number-fields . . Chapter Ⅻ. Local classfield theory 1. The formalism of classfield theory 2. The Brauer group of a local field 3. The canonical morphism 4. Ramification of abelian extensions 5. The transfer Chapter XIII. Global classfield theory I. The canonical pairing 2. An elementary lemma 3. Hasse's "law of reciprocity" . 4. Classfield theory for Q 5. The Hiibert symbol 6. The Brauer group of an A-field 7. The Hilbert p-symbol 8. The kernel of the canonical morphism 9. The main theorems 10. Local behavior of abelian extensions 11. "Classical" classfield theory 12. "Coronidis loco". Notes to the text Appendix Ⅰ. The transfer theorem Appendix Ⅱ. W-groups for local fields Appendix Ⅲ. Shafarevitch's theorem Appendix Ⅳ. The Herbrand distribution Index of definitions

相关推荐

追问
2025-03-04 9.3k
长安的荔枝
2025-03-05 4.8k

评论

2024-06-19 01:25:51
书虫小明发表
《基础数论》是一本非常棒的数论教材,书中内容详实,讲解清晰,循序渐进,非常适合入门学习数论或作为进阶教材使用。书中涵盖了数论基础的基本概念和理论,并深入探讨了类域论等高级主题。对于数论领域的初学者和专业人士来说,都是一本非常有价值的读物。
2024-06-19 01:25:51
数学爱好者发表
作为一名数学爱好者,我被《基础数论》严谨的逻辑和深刻的见解所折服。魏尔大师以其独到的视角,带领读者深入探索数论的奥秘。书中对数论基本概念的阐述简洁明了,对类域论的深入分析更是令人惊叹。对于想要深入理解数论核心思想的读者来说,《基础数论》绝对是不容错过的经典之作。
2024-06-19 01:25:51
数据科学家发表
从数据科学的角度来看,《基础数论》为解决实际问题提供了宝贵的理论基础。书中对数和模的深入研究,对于密码学、数据分析等领域的应用有着重要意义。通过理解数论的原理,数据科学家可以开发出更加安全、高效的算法和模型,从而从数据中提取更有价值的信息。
2024-06-19 01:25:51
教育工作者发表
作为一名数学教育工作者,我非常欣赏《基础数论》对数学思维的培养。书中以生动的例子和清晰的论述,阐释了抽象的数论概念。通过学习本书,学生不仅可以掌握数论知识,更能培养严谨的逻辑思维、解决问题的能力和创造性思维。对于激发学生对数学的兴趣和培养未来的数学人才来说,《基础数论》是一本非常宝贵的教材。
2024-06-19 01:25:51
计算机极客发表
对于计算机极客来说,《基础数论》是一本不可多得的工具书。书中对数论算法的详细介绍,为密码学、信息安全等领域的算法设计和实现提供了坚实的基础。通过理解数论原理,计算机极客可以开发出更加安全、可靠的系统和应用程序。
登录发表评论