千经万典,孝悌为先。
--《增广贤文》
:

纯数学教程

纯数学教程

作者: [英] G.H.Hardy

出版社: 机械工业出版社

出版时间: 2004-2

价格: 65.00元

ISBN: 9787111137856

【🔥扫码右侧二维码】

【📱扫码极速下载】浏览器自动唤起

💎独家资源·限时共享

作者简介:

G. H.Hardy英国数学家(1877—1947)。1896年考入剑桥三一学院,并子1900年在剑桥获得史密斯奖。之后,在英国牛津大学。剑桥大学任教,是20世纪初著名的数学分析家之一。 他的贡献包括数论中的丢番图逼近、堆垒数论、素数分布理论与黎曼函数,调和分析中的三角级数理论。发散级数求和与陶伯定理。不等式、积分变换与积分方程等方面,对分析学的发展有深刻的影响。以他的名字命名的Hp空间(哈代空间),至今仍是数学研究中十分活跃的领域。 除本书外,他还著有《不等式》、《发散级数》等10多部书籍与300多篇文章。

内容简介:

自从1908年出版以来,这本书已经成为一部经典之著。一代又一代崭露头角的数学家正是通过这本书的指引,步入了数学的殿堂。 在本书中,作者怀着对教育工作的无限热忱,以一种严格的纯粹学者的态度,揭示了微积分的基本思想、无穷级数的性质以及包括极限概念在内的其他题材。

目录:

CHAPTER I REAL VARIABLES SECT. 1-2. Rational numbers 3-7. Irrational numbers 8. Real numbers 9. Relations of magnitude between real numbers 10-11. Algebraical operations with real numbers 12. The number 2 13-14. Quadratic surds 15. The continum 16. The continuous real variable 17. Sections of the real numbers. Dedekind's theorem 18. Points of accumulation 19. Weierstrass's theorem . Miscellaneous examples CHAPTER II FUNCTIONS OF REAL VARIABLES 20. The idea of a function 21. The graphical representation of functions. Coordinates 22. Polar coordinates 23. Polynomias 24-25. Rational functions 26-27. Aigebraical functious 28-29. Transcendental functions 30. Graphical solution of equations 31. Functions of two variables and their graphical repre- sentation 32. Curves in a plane 33. Loci in space Miscellaneous examples CHAPTER III COMPLEX NUMBERS SECT. 34-38. Displacements 39-42. Complex numbers 43. The quadratic equation with real coefficients 44. Argand's diagram 45. De Moivre's theorem 46. Rational functions of a complex variable 47-49. Roots of complex numbers Miscellaneous examples CHAPTER IV LIMITS OF FUNCTIONS OF A POSITIVE INTEGRAL VARIABLE 50. Functions of a positive integral variable 51. Interpolation 52. Finite and infinite classes 53-57. Properties possessed by a function of n for large values of n 58-61. Definition of a limit and other definitions 62. Oscillating functions 63-68. General theorems concerning limits 69-70. Steadily increasing or decreasing functions 71. Alternative proof of Weierstrass's theorem 72. The limit of xn 73. The limit of(1+ 74. Some algebraical lemmas 75. The limit of n(nX-1) 76-77. Infinite series 78. The infinite geometrical series 79. The representation of functions of a continuous real variable by means of limits 80. The bounds of a bounded aggregate 81. The bounds of a bounded function 82. The limits of indetermination of a bounded function 83-84. The general principle of convergence 85-86. Limits of complex functions and series of complex terms 87-88. Applications to zn and the geometrical series 89. The symbols O, o, Miscellaneous examples CHAPTER V LIMITS OF FUNCTIONS OF A CONTINUOUS VARIABLE. CONTINUOUS AND DISCONTINUOUS FUNCTIONS 90-92. Limits as x-- or x--- 93-97. Limits as z-, a 98. The symbols O, o,~: orders of smallness and greatness 99-100. Continuous functions of a real variable 101-105. Properties of continuous functions. Bounded functions. The oscillation of a function in an interval 106-107. Sets of intervals on a line. The Heine-Borel theorem 108. Continuous functions of several variables 109-110. Implicit and inverse functions Miscellaneous examples CHAPTER VI DERIVATIVES AND INTEGRALS 111-113. Derivatives 114. General rules for differentiation 115. Derivatives of complex functions 116. The notation of the differential calculus 117. Differentiation of polynomials 118. Differentiation of rational functions 119. Differentiation of algebraical functions 120. Differentiation of transcendental functions 121. Repeated differentiation 122. General theorems concerning derivatives, Rolle's theorem 123-125. Maxima and minima 126-127. The mean value theorem 128. Cauchy's mean value theorem SECT. 129. A theorem of Darboux 130-131. Integration. The logarithmic function 132. Integration of polynomials 133-134. Integration of rational functions 135-142. Integration of algebraical functions. Integration by rationalisation. Integration by parts 143-147. Integration of transcendental functions 148. Areas of plane curves 149. Lengths of plane curves Miscellaneous examples CHAPTER VII ADDITIONAL THEOREMS IN THE DIFFERENTIAL AND INTEGRAL CALCULUS 150-151. Taylor's theorem 152. Taylor's series 153. Applications of Taylor's theorem to maxima and minima 154. The calculation of certain limits 155. The contact of plane curves 156-158. Differentiation of functions of several variables 159. The mean value theorem for functions of two variables 160. Differentials 161-162. Definite integrals 163. The circular functions 164. Calculation of the definite integral as the limit of a sum 165. General properties of the definite integral 166. Integration by parts and by substitution 167. Alternative proof of Taylor's theorem 168. Application to the binomial series 169. Approximate formulae for definite integrals. Simpson's rule 170. Integrals of complex functions Miscellaneous examples CHAPTER VIII THE CONVERGENCE OF INFINITE SERIES AND INFINITE INTEGRALS SECT. PAGE 171-174. Series of positive terms. Cauchy's and d'Alembert's tests of convergence 175. Ratio tests 176. Dirichlet's theorem 177. Multiplication of series of positive terms 178-180. Further tests for convergence. Abel's theorem. Mac- laurin's integral test 181. The series n-s 182. Cauchy's condensation test 183. Further ratio tests 184-189. Infinite integrals 190. Series of positive and negative terms 191-192. Absolutely convergent series 193-194. Conditionally convergent series 195. Alternating series 196. Abel's and Dirichlet's tests of convergence 197. Series of complex terms 198-201. Power series 202. Multiplication of series 203. Absolutely and conditionally convergent infinite integrals Miscellaneous examples CHAPTER IX THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS OF A REAL VARIABLE 204-205. The logarithmic function 206. The functional equation satisfied by log x 207-209. The behaviour of log x as x tends to infinity or to zero 210. The logarithmic scale of infinity 211. The number e 212-213. The exponential function 214. The general power ax 215. The exponential limit 216. The logarithmic limit SECT. 217. Common logarithms 218. Logarithmic tests of convergence 219. The exponential series 220. The logarithmic series 221. The series for arc tan x 222. The binomial series 223. Alternative development of the theory 224-226. The analytical theory of the circular functions Miscellaneous examples CHAPTER X THE GENERAL THEORY OF THE LOGARITHMIC, EXPONENTIAL, AND CIRCULAR FUNCTIONS 227-228. Functions of a complex variable 229. Curvilinear integrals 230. Definition of the logarithmic function 231. The values of the logarithmic function 232-234. The exponential function 235-236. The general power a 237-240. The trigonometrical and hyperbolic functions 241. The connection between the logarithmic and inverse trigonometrical functions 242. The exponential series 243. The series for cos z and sin z 244-245. The logarithmic series 246. The exponential limit 247. The binomial series Miscellaneous examples The functional equation satisfied by Log z, 454. The function e, 460. Logarithms to any base, 461. The inverse cosine, sine, and tangent of a complex number, 464. Trigonometrical series, 470, 472-474, 484, 485. Roots of transcendental equations, 479, 480. Transformations, 480-483. Stereographic projection, 482. Mercator's projection, 482. Level curves, 484-485. Definite integrals, 486. APPENDIX I. The proof that every equation has a root APPENDIX II. A note on double limit problems APPENDIX III. The infinite in analysis and geometry APPENDIX IV. The infinite in analysis and geometry INDEX

相关推荐

追问
2025-03-04 9.3k
长安的荔枝
2025-03-05 4.8k

评论

2024-06-18 18:53:41
书海漫步发表
作为数学领域的经典著作,《纯数学教程》以其严谨的学术态度和清晰的阐述,让我叹服。书中对于微积分、无穷级数和极限等概念的讲解,深入浅出,让我这个数学小白也能轻松理解。读罢此书,我不仅收获了数学知识,更体会到了严谨治学的精神。
2024-06-18 18:53:41
数学爱好者发表
哈代的《纯数学教程》是一部数学领域的里程碑,为数学学习者开启了一扇通往纯数学殿堂的大门。作者以严谨的逻辑和清晰的语言,将微积分、无穷级数和极限等抽象概念变得生动有趣,让读者领略数学之美。这本书不仅是数学学习的必读之作,更是培养严谨思维的利器。
2024-06-18 18:53:41
求知若渴发表
《纯数学教程》是一本数学基础领域的权威之作,作者哈代用朴素的语言阐述了深奥的数学原理,让初学者也能轻松入门。书中对于微积分、无穷级数和极限等概念的讲解循序渐进,深入浅出,帮助读者建立坚实的数学基础。这本书不仅是数学学习的必备指南,更是一本值得反复研读的经典。
2024-06-18 18:53:41
学术宅发表
哈代的《纯数学教程》是一本数学史上的不朽杰作,以其严谨性、清晰度和洞察力著称。书中对于微积分、无穷级数和极限等概念的探讨,体现了作者对数学本质的深刻理解。对于数学爱好者和专业人士来说,这本书都是一本不可多得的宝贵资源,能帮助他们深入理解数学的基本原理和发展历程。
2024-06-18 18:53:41
数学小天才发表
作为一名对数学充满热情的学生,《纯数学教程》给了我无穷的启迪。哈代笔下的数学世界既严谨又优雅,书中对于微积分、无穷级数和极限的讲解鞭辟入里,让我对这些抽象概念有了全新的认识。这本书不仅提升了我的数学能力,更激发了我的求知欲,让我对数学产生了更加浓厚的兴趣。
登录发表评论