满招损,谦受益。
--《尚书》
:

逆问题数学理论导论

逆问题数学理论导论

作者: A.Kirsch

出版社: 世界图书出版公司

出版时间: 1999-10

价格: 42.00元

ISBN: 9787506242516

【🔥扫码右侧二维码】

【📱扫码极速下载】浏览器自动唤起

💎独家资源·限时共享

内容简介:

Following Keller [119] we call two problems inverse to each other if the formulation of each of them requires full or partial knowledge of the other. By this definition, it is obviously arbitrary which of the two problems we call the direct and which we call the inverse problem. But usually, one of the problems has been studied earlier and, perhaps, in more detail. This one is usually called the direct problem, whereas the other is the inverse problem. However, there is often another, more important difference between these two problems. Hadamard (see [91]) introduced the concept of a well-posed problem, originating from the philosophy that the mathematical model of a physical problem has to have the properties of uniqueness, existence, and stability of the solution. If one of the properties fails to hold, he called the problem iU-posed. It turns out that many interesting and important inverse problems in science lead to ill-posed problems,, while the corresponding direct problems are well-posed. Often, existence and uniqueness can be forced by enlarging or reducing the solution space (the space of "models"). For restoring stability, however, one has to change the topology of the spaces,which is in many cases impossible because of the presence of measurement errors. At first glance, it seems to be impossible to compute the solution of a problem numerically if the solution of the problem does not depend continuously on the data, i.e., for the case of ill-posed problems. Under additional a priori information about the solution, such as smoothness and bounds on the derivatives, however, it is possible to restore stability and construct efficient numerical algorithms.   本书为英文版。

目录:

Preface Introdu

相关推荐

追问
2025-03-04 9.3k
长安的荔枝
2025-03-05 4.8k

评论

暂无评论
登录发表评论