数学悖论与三次数学危机

作者简介:
韩雪涛 科普作家,另著有《从惊讶到思考--数学悖论奇景》《好的数学:“下金蛋”的数学问题》等书,参编《十万个为什么(第六版,数学卷)》《改变世界的科学:数学的足迹》《课本上学不到的数学(五年级)》。1999年开始,他在《科学画报》《中华读书报》等刊物发表各类文章40多篇。 《好的数学:“下金蛋”的数学问题》被列入“2010年新闻出版总署向全国青少年推荐百种优秀图书”书目。
内容简介:
本书介绍数学中的三大悖论(毕达哥拉斯悖论、贝克莱悖论、罗素悖论)与三次数学危机,以时间为序,以环环相扣的数学家轶事为纲,带大家了解数学发展史,理解悖论的巨大作用,以及认识欧几里得几何、无理数、微积分、集合论等的来龙去脉。书中穿插大量数学家的逸事,融知识性与趣味性于一体。本书这一版专门添加附录介绍了哥德尔证明。
目录:
序(张景中) iii 前言 v 第一部分 毕达哥拉斯悖论与第一次数学危机 第1章 几何定理中的“黄金”:勾股定理 2 古老的定理 2 勾股定理的广泛应用及其地位 8 第2章 秘密结社:毕达哥拉斯与毕达哥拉斯学派 12 智慧之神:毕达哥拉斯 12 毕达哥拉斯学派的数学发现 16 毕达哥拉斯学派的数学思想 24 勾股定理证法赏析 35 第3章 风波乍起:第一次数学危机的出现 45 毕达哥拉斯悖论 45 第一次数学危机 50 第4章 绕过暗礁:第一次数学危机的解决 58 欧多克索斯的解决方案 58 同途殊归:古代中国的无理数解决方案 65 第5章 福祸相依:第一次数学危机的深远影响 70 第一次数学危机对数学思想的影响 70 欧几里得和《几何原本》 75 第一次数学危机的负面影响 82 第二部分 贝克莱悖论与第二次数学危机 第6章 风起清萍之末:微积分之萌芽 86 古希腊微积分思想 86 微积分在中国 104 第7章 积微成著:逼近微积分 116 蛰伏与过渡 116 半个世纪的酝酿 121 第8章 巨人登场:微积分的发现 133 牛顿与流数术 133 莱布尼茨与微积分 143 巨人相搏 150 第9章 风波再起:第二次数学危机的出现 153 贝克莱悖论与第二次数学危机 153 弥补漏洞的尝试 158 第10章 英雄时代:微积分的发展 166 数学英雄 166 分析时代 172 第11章 胜利凯旋:微积分的完善 183 分析注入严密性 183 分析的算术化 196 第三部分 罗素悖论与第三次数学危机 第12章 走向无穷 204 康托尔与集合论 204 康托尔的难题 217 第13章 数学伊甸园 220 反对之声 220 赞誉与影响 228 第14章 一波三折:第三次数学危机的出现 232 罗素悖论与第三次数学危机 232 悖论分析与解决途径 239 第15章 兔、蛙、鼠之战 246 逻辑主义 246 直觉主义 254 形式主义 260 第16章 新的转折 268 哥德尔的发现 268 数理逻辑的兴起与发展 274 附录 哥德尔证明 285 第一步:哥德尔配数 286 第二步:构造自指命题 296 第三步:证明哥德尔不完全性定理 300 参考文献 307
评论